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Summary. A new analytic second derivative expression of the electronic 
energy is derived for full configuration interaction (CI) wave functions. This 
formula is shown to be free from the derivative terms of both CI and MO 
coefficients. The second-order relationships between CI and MO coefficients 
for full CI wave functions are also presented. 
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I. Introduction 

In ab initio molecular orbital (MO) calculations, analytic derivative methods are 
now widely used in chemical applications [1, 2]. The analytic energy derivatives 
with respect to nuclear coordinate are indispensable in theoretical chemistry for 
determining molecular structures and chemical reaction pathways both accu- 
rately and economically. From the first derivative of total energy with respect to 
atomic positions, the equilibrium structure on the potential energy surface may 
easily be found. We can also look at the magnitudes of the energy second 
derivatives which give the force constant matrix in the vibrational analysis and/or 
in the Newton-Raphson search for stationary points such as transition-state 
structures [3, 4]. It is also important to characterize these stationary geometries 
by a normal coordinate analysis. 

Analytic derivative techniques are well-established for the Hartree-Fock 
(HF) wave functions [1, 5-7]. The same is not true for second derivatives of 
correlated wave functions, such as those from configuration interaction (CI) 
[8, 9], multi-configuration self-consistent-field (MCSCF) [10-15] or many body 
perturbation (MBPT) wave functions [16], though analytic first derivative meth- 
ods for these wave functions have been used for the last fifteen years. Inclusion 
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of the effect of electron correlation is very important not only to obtain 
accurate theoretical results but also to enable us to treat excited states. We 
therefore wish to develop a practical, feasible way to compute the analytic 
energy derivatives of correlated wave functions. Although several groups 
have developed computer programs for analytic second derivative methods 
for correlated wave functions [10-15], it remains computationally complex to 
evaluate the derivative of a wave function itself. Note that in order to calcu- 
late the derivatives of the electronic energy of the system the derivatives of 
variational parameters (i.e., MO and CI coefficients) with respect to nuclear 
coordinates are necessary as well as the derivatives of atomic orbital ( A t )  
integrals [ 16-18]. 

When the electronic energy is calculated with an HF or MCSCF wave 
function, all variational parameters are optimised. Because of this, one can 
reduce the order of the derivatives of the variational parameters required to 
evaluate the energy derivatives. The rule of the reduction of derivative order 
(which originates from Wigner's 2n + 1 rule for perturbation order [20, 21]) has 
been well discussed by Pulay [19]. For example, the first derivative of HF or 
MCSCF energies with respect to nuclear coordinate does not require the 
derivative of the MO or CI coefficients. Only first order MO and/or CI 
coefficients are needed to evaluate the second derivative HF or MCSCF energies. 
The first derivative of an MO coefficient can be calculated by solving the 
coupled-perturbed Hartree-Fock (CPHF) equation [7, 22, 23] whose practical 
application in large dimension has been established by Pople et al. [7]. Since MO 
and CI coefficients are coupled for MCSCF wave functions, a large effort is 
required to solve the CPMCSCF equation [24]. 

When the CI wave function is used to evaluate the energy, it should be 
noted that the MO's used to construct the electron configurations are not 
optimum. This situation necessitates the explicit evaluation of derivatives of 
the MO coefficients, though the derivatives of the CI coefficients do obey the 
2n + 1 rule due to the variational condition. For the second derivative of the CI 
energy, however, one has to evaluate the first derivatives of the CI coefficients 
from solving the coupled-perturbed configuration interaction (CPCI) equation 
[251. 

In the CI calculation, the large number of electron configurations constructed 
in the wave function in addition to the number of basis functions results in a 
computational difficulty. Since the Hamiltonian matrix of CI wave function is 
generally of large dimension, the ability to do energy derivative calculations 
would be determined by the limitation of the computational resources. 

In light of the increasing need for quantum chemical calculations using 
accurate wave functions, one needs to aim to do the computation with full CI 
wave functions where all variational parameters are fully optimizext. Once we 
obtain the full CI wave function, there is no need to optimize the MO's. This 
situation would provide an easy evaluation of the various kinds of molecular 
properties as well as the energy derivatives. In this paper we derive some of the 
relations about the energy derivatives up to second-order and present the reduced 
formula for the second derivative of full CI energy. 
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In the following section, the  electronic energy expression and its first and 
second derivatives for CI and MCSCF wave functions, as well as the constraints 
involved in both MO and CI spaces, are briefly reviewed. In the third section, the 
derivation of a simplified expression specifically applicable to full CI wave 
functions will be presented. 

2. Theoretical background [25] 

2.1. CI wave function and its electronic energy 

The electronic CI wave function is generally defined as the linear combination of 
a set of electronic configurations (CSF) ~i, 

!~1 = E C I fI) I " (1 )  
1 

Each electron configuration may be described by one or several combinations of 
Slater determinants, e.g. 

+, = II+,~o="-II. (2) 
In the scheme of LCAO-MO (linear combination of atomic orbitals-molecular 
orbitals), each molecular orbital q~+ is written as 

~0i~ E i C ~ ,  (3) 
/1 

where C~ is the ith MO coefficient of #th AO X~. CI coefficients {Cx} and 
MO coefficients {C~ } are the variational parameters to determine the electronic 
wave function and energy. Hereafter, we use capital letters (I, J, K, L) for 
electronic configurations, small Roman letters (i,j, k, l) for molecular orbitals 
and small Greek letters (#, v, p, a) for atomic orbitals. Defining the CI Hamilto- 
nian matrix 

= Z vgh~ + E r,~,(/j I gl), 
q ijkl 

the electronic energy is given by 

(4) 

in configuration basis, or 

F~ = y C , C / ~ .  (5) 
/J 

E = ~ yuh~ + ~ Fuk,(ijlkl ) (6) 
~j Okt 

in MO basis, where hij and (i j lkl)  are one- and two-electron MO integrals, and 
lJ 

y/J and Fijkl a r e  the one- and two-electron coupling constants between electronic 
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configurations and molecular orbitals. The one- and two-electron density ma- 
trices ?~ and F~jkt are connected with the following relations: 

?~] = Z CzCjY~ t (7) 
/ J  

and 

/ J  F~kl = Y', C, CjF ~jk~. (8) 
/ t  

Under the condition of the orthonormality of the CI wave function: 

C~ = 1, (9) 
I 

we have the variational condition, 

E G ( H I j  - 6HE) ~--- 0, (10) 
Y 

to determine the CI wave function and its energy. 
Note that the electronic energy is the function of not only the variational 

parameters but also parameters involving the basis functions Zu. Examples of  
such variables considered in this paper are the nuclear coordinate R, electric field 
~, and orbital exponents {, i.e., 

z. = zAR, ~, O, (11) 

We refer to such 'real' variables R, ~, and ~ as " a "  or "b"  in the text. 

2.2. First derivatives o f  the energy 

The first derivative of a CI energy (5) with respect to a non-variational parameter 
" a "  can be expressed as follows: 

OH1t (12) 

Here, we used condition (10) and the derivative form of Eq. (9). The first 
derivative of the Hamiltonian matrix HIS may be divided into two terms 

oaIJ-- = n~j + 2 Z famXI"Jm, (13) 
Oa im 

where HTj involves the derivatives of AO integrals and the second term contains 
the derivative of MO coefficients. Defining the integral derivatives in the MO 
basis as 

hij = ~  i ,j ~h~,~ (14) a C~Cv aa 
# v  
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and 

c ,  cJ r c '  ,~(t~v J_po-) 
Itvpa 

the first term of Eq. (13) becomes 

(~5) 

IJ a [J "" H~s = Z 7 u ho + Z F gkt(tJ I kl) ~" (16) 
U ~jk~ 

The matrix U ~, which appeared in the second term of Eq. (13), is related to the 
derivative of MO coefficients ~C~/~a by 

Z ~ J c~C~ (17) 

The "bare" Lagrangian matrix X~ in Eq. (13) may be expressed as follows: 

x,'~ = Z  '~ Ik0. (18) 7,~jha + 2 ~  u .. [ 'm jk l ( t J  
j j k l  

Using Eqs. (12)-(18), the first derivative of the CI energy may be obtained 
from 

dE 
- -  = E ~ + 2 ~ U~%X~m, (19) 
~ a  im 

where 

E~ = E ~,.h~ + E r~,,(i j lkl)  ~. 
d Ukt 

The Lagrangian matrix X which appears in Eq. (19) is defined as 

(20) 

X,'m = Z ~,.jhij + 2 E r~j~,(olkt). 
j j k l  

(21) 

2.3. Second derivatives of the energy 

The second derivative of the CI energy (5) may be obtained by further differen- 
tiation of Eq. (12) with respect to the second variable "b". One may obtain the 
relationship between the derivatives of the CI coefficients and those of Hamilto- 
n/an matrix elements by differentiating Eq. (10) 

dcj (~/~,j ~) 
~s ~a ( " z s - f z s E )  + ~ Cj ~ Oa - $ ' J ~ a  =0. (22) 

This relation is so-called CPCI equation. Using Eq. (22), the second derivative of 
CI energy may be expressed as follows: 

~ 2 E  ~ ~ 0 2  O l j  ~ O C I O C  J 

Oa ~b 
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Using the definition of the second order U ~b matrix 

E u.~b(; ' = 02C~ (24) 
s -1' ~ OaOb' 

the second derivative of Hamiltonian matrix elements may be written as follows: 

~ 2 H I j  

8a db 

where 

H;~ + 2 g" (uebY~. s tT" y(jo UO Y(J% b zJ ,_,,._,,~ + + + 2 X X Ufm C5~ (25) - -  ~ r m  "~ tm - - t m - -  tm ., Y i m j n ,  
im im jn  

H]# = ~ .u Lab ILl " ab YO "~S + E Fgk,(tJ ]kl) , (26) 
ij ijkl 

X t / .  V vu  ha [kl)~, (27) tm L~ i m j " i j  + 2 ~ I J  "" = F m S k l ( t  J 
j Ski 

and 

The CI 
(22)-(30). 

where 

Y~mj,U =7,,.hi s u  + 2 Z {rm,k,0J'~ " t k O  + 2Fmk,,(zu !k I j/)}, (28) 
kl  

h ~  b E i J O 2 h v  ~ (29) = C ~ C v d a S b ,  
#v 

(ij [kl) ab = Z (7 CsCkc z 82(#v ~ a) (30) 

second derivative may now be explicitly given by combining Eqs. 

c~2E 
(UimXim + UimX,.)  . . . . .  E ab + 2 ~ ab b UimXi~ + 2 ~ a b 

Oa 8b i,. i,. 

OCl OCs 
+ 2 2 Z  . b u~. vTo r, . . .  - 2 Z ~a ~ (n,~ - ~ .E) ,  

im Sn IJ  

(31) 

E a b  = ~ ]lijh~j b + 2 Fes~,(o'lkl) a~, (32) 
8 Ski 

and 

XT,. = Z ?,~sh~ " + 2 E Fmjk,(ij [kl)" (33) 
j Ski 

Y~mS,, = 7re.his + 2 E {rm,,k,(~ I kl) + 2Fmk.,( ik I j l ) } .  
kl  

(34) 

2.4. Energy derivatives for M C S C F  wave function 

Before we discuss the analytic derivative formula of the full CI energy, let us 
review the derivative expression for MCSCF wave functions. The analytical 
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expression for the MCSCF energy is a good starting point from which to derive 
the full CI energy derivative, since the full CI wave function may be considered 
as a special case of the MCSCF wave function. Noticing that both CI and MO 
coefficients are simultaneously optimized in the MCSCF procedure, the follow- 
ing two variational conditions hold: (i) the secular equation (10) for CI co- 
efficients and (ii) the so-called generalized Brillouin theorem 

X+j - Xji = 0, (35) 

which gives the optimum condition for orbital variation. Differentiating the 
orthonormalization condition for molecular orbitals 

S ~ / = E  i j C ~ S ~ C ~  = 6o, 
ltv 

we have the self-relation of the matrix U ~ from referring Eq. (17): 

(36) 

U~ + U)] + S~ = 0, (37) 

where the overlap derivative matrix S a is defined as 

,~ ~a"  (38) 

In the case of an MCSCF wave function, the analytic first derivative of the 
energy (19) turns out to be 

r 

E a a Oa - -- E SimXim (39) 
im 

from (35) and (37). Equation (39) is free from the derivatives of variational 
parameters, since the wave function is determined to be optimum in both CI 
and MO spaces. 

The relation for the matrix U ~b given by Eq. (24) is similar to Eq. (37), 
which can be written as 

(40) 

where 

+ =o, 

a -b b a b 
-- - S ; , ~ S , m ) .  (411 

m 

The overlap second derivative matrix, S ab, which appeared in Eq. (41) is 
defined as 

C ~ J ~&~ S ~  = E ~ Cv ~a ~-b" (42) 
,uv 

Substituting Eqs. (35) and (40) into Eq. (31), a final expression for the MCSCF 
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energy second derivative becomes 

c32EMeSCF _ E~b_ ( V' S~ Sb ) 
Oa ab ~ S~b -- 2 ~ ik jk Xo 

+ 2 ~  a b b U~X~j) + 2 ~ a b ( u ~ x  o. + y~ 6j, x ~ )  u o. uk~( Y~jk~ - 
i j  i j  kl 

O C  I O C j  ( ' H  -2~x" ~ 1j - -  (~I jE) .  (43) 

3. Analytical second derivatives of the full CI energy 

The first and second derivative expressions (39) and (43) derived for MCSCF 
energy also hold for the full CI energy, because the generalized Brillouin 
theorem (35) is automatically satisfied for full CI wave functions. The impor- 
tant aspect is that the MO's used in the calculation of the full CI energy are 
arbitrary under the orthonormality constraint (36) since all possible electron 
configurations are taken into account. Thus, the energy obtained by the full CI 
wave function does not change no matter how the MO's are determined to 
construct the electron configurations. Although there is no condition to be 
satisfied for the MO's except orthonormality, there must be some relations 
between the MO and CI coefficients so that the potential energy surfaces are 
smoothly connected. With respect to this, it is not necessary to determine the 
derivatives of  the MO's when we evaluate the analytical energy derivatives for 
the full CI wave function. 

Equation (39) for the energy first derivative does not include the derivatives 
of  the MO coefficients as a result of the symmetric property of Lagrangian 
matrix X. The energy second derivative (43), however, explicitly involves both 
the first derivatives of the MO and CI coefficients. These derivative terms in 
Eq. (43) need to be re-expressed so that the analytic energy expression for the 
full CI energy is free from derivatives of  variational parameters. 

In the following subsections, we will try to eliminate the derivatives of  MO 
and CI coefficients from the formula of  the analytical second energy derivatives 
for the full CI wave function. 

3.1. First derivatives of CI coefficients 

Let us clarify how the first derivatives of  CI coefficients are obtained. The 
CPCI equation (22), being formally a simultaneous equation, provides the first 
derivatives of  the CI coefficients as the solution. Since Eq. (22) cannot be 
solved directly due to a singularity, it must be modified by including the 
orthonormality condition (9) as already shown elsewhere [24, 25]. By defining 
the augmented Hamiltonian matrix act ~ 

~IJ ==-HIj - -  6HE + CtCj, (44) 
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the CPCI equation may be written in matrix form as 

~C ~ 
~176 " t3a ~a " C. (45) 

Equation (45) is seen to be formally the same as the Eq. (22) since 

C, OCz = 0, (46) 
Oa 

which is the first derivative of Eq. (9). Multiplying the inverse of  the augmented 
Hamiltonian matrix on the left-hand side of  Eq. (45), gives an expression for the 
first derivative of  the CI coefficients without a singularity problem, 

~c ~ 
r - acg- 1 . . . . . .  C. (47) Oa 

The derivative term of the CI coefficients in the second derivative expression is 
formally eliminated by substituting Eq. (47) into Eq. (43)�9 The last term of  Eq. 
(43) becomes 

c ~  ~C + ~ "  a__C 
- 2 ~ ~C~IO--(HzJ~a Ob - ~xgE) = - 2  ~a-a" ~b 

Oar ~ ~j/g 
= - 2 C  + " - -  �9 o~r - 1  �9 o'r �9 ~ - I  . �9 C 

Oa t3b 

= - 2 C  + t3acg ~u �9 Oa "acg-I Ob "C, ( 4 8 )  

where the first derivative of augmented Hamiltonian matrix elements are written 
as follows: 

~a - H ~ j +  2 ~  U u X  o. - ~ s  E + 2  .. UTjX u . (49) 
l j  

3.2. Elimination o f  the term depending on derivatives o f  M O  coefficients 

The next step is to eliminate the first derivatives of the MO coefficients which 
should not be necessary for the expression of  the second derivatives of the full 
CI energy. Noting that the first derivatives of  the MO coefficients are included 
in Eq. (49), we collect the terms depending on the U ~ and U b matrices in 
Eq. (43). 

Let us define the augmented derivative Lagrangian matrix, f a, and the 
augmented Y matrix, ~ ,  as follows: 

~ i j  -- XTj 2 ~ CI(H']j a 1 KL a _ - 5 , ~ E  ) ~ e j K  ( X ,  - 5 , , ~ X , j ) C ~ ,  ( 5 0 )  
I J K L  

~/ijk, Yu~, - 6j, Xik - 4  ~ CI(X~ s. -1 KL - - & j x o ) a ~ j , ,  ( x ~ ,  - ~ , , L x ~ , ) c L .  (51) 
I J K L  
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By using Eqs. (48), (50), and (51), Eq. (43) becomes 

) Ua - 

- 2 ~ C, (HTj  - 6 , j E ' ) ~ s  I ( H b L  - 6KLEb)CL 
IJKL 

+ 2 ~  a b b . 2 ~  a b (UuY" ~ + ~ (52) UoY( U) + Uo.UktYluk~. 
ij ij k l 

Noticing that the energy and the relation (35) do not change under the 
unitary transformations of MO's in the case of full CI wave functions, the 
following relations, 

~ - I ~  = 0 ,  ( 5 3 )  

and 

~akl - YCjikl - Y/ijtk + ~jitk = 0, (54) 

must hold for full CI wave functions since they are the second-order expressions 
corresponding to the generalized Brillouin theorem (35). If  Eqs. (53) and (54) are 
satisfied, the U a and U b matrices in the third line of  Eq. (52) may be reduced to 
the S" and S b matrices. This is similar to the replacing of the first-order U a 
matrix by the overlap derivative matrix S" in the first derivative formulae of  
MCSCF or full CI energy (Eq. (39)). 

Using the results of several full CI calculations, we have checked the identity 
relations among the values of  the matrix elements of f o  and ~r by numerical 
calculation. In addition to Eq. (53), all the values which appeared in Eq. (54) 
were found to be identical, i.e., 

~uk~ = ~ = ~;jlk = ~j;tk. (55) 

Consequently, Eqs. (53) and (55) may be regarded as the second-order relations 
for the full CI wave functions corresponding to the first-order equation (35). 

3.3. Analyt ic expression o f  energy second derivatives f o r  fu l l  CI  wave functions 

Since we have found that the relations (53) and (55) hold in the case of  full CI 
wave functions, the final expression for the second derivatives of the full CI 
energy may be described as 

~ 2 E  _ _ E a b _ _ E X i j ( a ~ b  __ 2~k aaikajkb) 
~a ~b ij 

2 ~ a a 1 b --  C I ( H I j  --  (~IjE )~r176 ( H K L  --  (~KLEb)CL 
IJKL 

a b b a 1 Z(s, x  + - Z  Z ~ -- S ijS kl ~ ~k~, 
ij 2~j 

which does not contain derivatives of  either MO or CI coefficients. 

(56) 
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Since Eq. (56) involves the inverse of the augmented Hamiltonian matrix, 
we may re-express Eq. (56) in a practically accessible formula using a technique 
similar to the Z-vector approach proposed by Handy and Schaefer [26] for the 
Calculation of CI first derivatives. Thus Eq. (56) becomes 

Oa O~--b - X ~  So. - 2 Z SikS~k 
k 

a b 6 a 1 

0 ij k!  

+ ~  [(B7 _ ~ 7 ) ( ~ b  _ Z  b) + ( B  b __ Mb)(~e7 -- ZT)], (57) 
I 

where the elements of the vector B" and ~ are defined as follows: 

87 = E Z c j ( x f  - a,jxo) (58) 
O J 

and 

~ ' ]  = ~ C s ( H •  - 61sEa).  (59) 
J 

The elements of the vector Z" and ~ a  are the solutions of the following linear 
equations whose right-hand sides are the values of Eqs. (58) and (59) respec- 
tively, 

,,~r Z a = B", (60) 

and 

oug. ~tea = ~a .  (61) 

4, Concluding remarks 

The analytic expressions of the energy derivatives for full CI wave functions do 
not depend on the derivatives of the variational parameters (i.e. the MO and 
CI coefficients). In addition to the condition X~j = Xji, the relations (53) and 
(54) must be satisfied in order to eliminate the derivatives of CI and MO 
coefficients in the analytic energy second derivatives. We have tested these 
relations with numerical calculations, and have found that the relations (53) 
and (55) indeed hold when the full CI wave functions were used. It is interest- 
ing to know that the augmented Y matrix is symmetric to the interchange of 
MO indices, i.e. 

~ijkl  = ~j ik l  = ~ l ~  = ~j i tk  = ~1~l~ = ~t,',ij = O~kOi = 03tt~jl, (62) 

if and only if full CI wave functions are utilized. This relation is similar to that 
of two-electron quantities, such as integrals and density matrix. The final 
formula for the second energy derivatives is given by Eq. (56) or (57). 
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